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BRANCHING AND STABILITY OF PERMANENT ROTATIONS AND*RELATIVE EQUILIBRIA
OF A BODY SUSPENDED FROM A ROD

V.N. RUBANOVSKII

The problem of the motion of a rigid body with a triaxial central ellipsoid
of inertia suspended from a fixed point of a weightless non-deformable
rod whose point of contact with the body lies on the principal central
axis of inertia, is considered. Sets of all permanent rotations and
relative equilibria of the body, their branching and stability, are
studied. The results are presented in the form of bifurcation diagrams.
The distribution of permanent rotations (relative equilibria) on these
diagrams obeys the law of variation of stability when the value of the
area integration constant (the angular velocity of the translational
rotation of the body) is fixed.

The permanent rotations and relative equilibria of a body suspended on a string
were studied in /1-3/.

1. 1et ys consider themotion of a body suspended on a hinge from a weightless non-
deformable rod attached to a fixed point O, with the point of suspension O lying on the
principal central axis of inertia.

The equations of motion of the body admit of energy and area integrals, and we have the
following expression /4/ for the changed potential energy of the system:

W=1, B*BJ*+ 11
M=—mg(lv—a)-%, J=u%-8.2+m[xx (v—a)]?

Here k is the constant of the area integral, Il is the potential energy due to gravity,
J is the moment of inertia of the body about the vertical passing through the point Oy, m and
® is the mass and central tensor of inertia of the body with diagonal elements J,, J,, J4, %
and v are unit vectors of the descending vertical and the direction of the string from the
point O,to O,a 1is the radius vector of the point O relative to the centre of mass C of the
body, and g and ! are the acceleration due to gravity and the length of the rod.

We introduce two right rectangular coordinate systems: the system Cz,r,zy rigidly
attached to the body, whose axes coincide with the principal central axes of inertia, and the
system Oy y,y; rotating with angular velocity Q2 =~4J1 about the y, axis directed vertically
downwards.

We shall assume that the point O at which the rod is joined to the body, lies on the I3
axis whose direction coincides with the direction of the vector a. We shall denote by Vs
the projections of the vector v on to the y,{(s=1,2,3) axes. Let a, [,y be the unit vectors
of the 4, %, z; axes and a,, f,, y, their projections on to the y, axes, and

:'l;a=a2—f|_=07 n3=ﬂ2—1=0, nY=Y2_1=O’ Ty = (1‘1)
‘\72—1=0

fAgs=0a-p=0, ngy=p.y=0, Ty =7v-a=0
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We have the following expressions for Il and 7 in the Ouy; coordinate system:

M= — mg (v, — ay,), J = Jyou® + JBs" + Ja952 -+ m [(Ivy— ay)® -+ vy, — ap.)?]
Further, instead of W we shall consider the function

W =W+ 11282 (Ayty + Aoty - Agrig - Ayty - Exaﬁﬂaﬁ—!-
2;‘Bv"ﬂv + 27‘vo¢”va), Q=FkJ

where Ay, Mg, ..., Ay are the undetermined Lagrange multipliers.

2. The condition of stationarity
§W,=20 .1

of the function W, with respect to the variables introduced, together with (1.1), leads to
the equations for determining the stationary motions of the body, representing its uniform
rotations about the vertical with angular velocity ==k, where %, J, are the values
of k,J for the stationary motion /4/.

From {2.1) we obtain {(the relations not written out are obtained by circular permutation
of the symbols within the brackets)

Ao = J1o5% hap = J103B3, Aay = Jyavy (@B, 12) (2.2)
Mg == J gys0t — MEacsQ™% — ma [ (vi@y -+ Vylty) — @ (110 +
T202)] (@f)

hy = J g¥y% — mgY,L — ma (2 (vyys =+ ¥a¥2) — @ (v -+ 1P

mal mgl
e Sand W 1i(12), vp= e hy¥==hy —ml?

Relations (2.2) for v, v, imply that in the case of stationary motions the rod and 4
axis lie in the same vertical plane.

Taking into account (2.2), we obtain from the relation Agp = Ape the relation (J;— Jy)
o4, == 0, which leads, when Jys= J,, to the following two cases: o3=0 and f;=0.

Let us consider the case o3~ 0. Taking into account (2.2) we obtain, from Agy == hys,
the relation which leads to the analysis of twc subcases

mgah ¥
5330 or Va=—gt (B + ma®) Ao - (mal)E] (2'3)

Bjg=J;—Jg j=1,2)

The assumption that f,==0, yields the solutions
ay=Py=1, yy=c1, vs==t, a=ay=ps=p= (2.4)
N=TpE=vy=vy=0
Aa==hap == hay = hg =gy =0, A* =(mal)fc™
0 = maPQ?l (veg — UYL, hy=J; — ygmgald, k= J,0Q
The solutions {2.4) describe four one-parameter families of uniform rotations of the body,
in which the rod and the 7; axis are both vertical, the point O can lie below {vy=1), as well

as above (vz=-—1) the point O, and the centre of mass C below (y;= —1)}, or above (y3==1)
the point O. Fig.l shows the relative positions of the points Oy, 0,C in the uniform rotations
(2.4).
The second assumption of (2.3) leads to the solution
o=y fymoy =ay; =0, ag=1, Br=7vy Ps=—17, (2.5)
n=1—7
S ... S —— O Wy == Bl
Vs = €% (6 4~ Ngg) 7 Vi= mal YO 37 Qilsy *

Op =0 -+ ma®
ho=hap==hay==0, Ag=JoP:% dgy=1Jillgvs, As*=ma’e™
_ Jaog [{mal)? — %] } 4 An(mgac)? (20y - Ag)
w=ou{l + S i X G F s i
_ Su? _ S%{ow + Baa)® — (malsy)? _
T=Tot (B + 255 ) B, Bt TGl k0
Let us now consider the case B; =0, when the relation oy = Aya, taking both (2.2}
and (1.1) into account, yields a relation which leads to the following two subcases:

mgal\,*
ay==0 or y=-— Q{83 -+ ma?) Ay* + (mal)?]
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The first case leads to solutions (2.4), and the second case leads to a solution which
will be described by the formulas (2.5) in which the symbols (aB, 12) have been circularly
permuted. We shall call this solution (2.6).

Solutions (2.5) and (2.6) describe the one-~parameter families of uniform rotations of
the system, as a single rigid body, about the vertical, with angular velocity Q, in which the

rod.and the z, axis both lie in the O%y; plane. The z; axis for (2.5) and z, axis for (2.6)
are perpendicular to this plane.

3. The stationary motions (2.4)-(2.6) can be represented geometrically, in k, o, &y
parameter space, by the points on the curve I', whose branches, corresponding to the motions



300

(2.4), are described in parametric form by equations of the form k= J4, 0= 0 (Q), &y = ky (),
and the branches corresponding to the motions (2.5) and (2.6), by equations of the form & =
J (6) Q (6), Ay =Dhry(0). Fig.2 shows the form of the projection of the curve I' onto the plane
hy ==0 for the case when the parameters of the system satisfy the conditions

0<Jy — Ty < Jy — Jy< ma(l— a) (.1)

The conditions hold, in particular, for a homogeneous body stretched in the direction of
the z3 axis and suspended from a fairly long rod.

In Fig.2 the branches Ty(a),ly(b), Ty(c), T,(d), Ts(a),I; (b), for which the letters
a, b, ¢ and d denote the types of motions, with the relative positions of the points O, 0, ¢
depicted in Fig.l, correspond to the motions (2.4). The branches I@(a), I@(d), I (p),
T,® (¢), correspond to the motions (2.5) and (2.6), and for (2.5) j=1, while for (2.6)
j=2. Here the letters a, b, ¢ and d refer to the types of relative positions of the rod
0,0 and segment CO of the z; axis, shown in Fig.3. Figs.3a-d refer to the case when Q is
finite, and Figs.a'-d’' to the limiting case when Q== o0. We have the following relations in
Fig.3 for the cases a-d and a’'~d’:

2) 0<a<¥<L5;b) 0<al2n—B< 55 ¢) 0O —nlal

a

. a
5 ; b') a==arcsin —

a) a=79— 7

3n n 35
, 'ﬂ':—z—';c') a:—z—, 9=

) 0o —a< 2m — 9 < arn a:n——arcsinli, =0

Note that the projections in Fig.2 of the branches of [I', corresponding to the motions (2.4)
on to the plane Ay==0, should be regarded as double curves consisting of two "edges", with
a different type of motion shown in Fig.l corresponding to each edge.

4. The sufficient conditions for stability of the stationary motions (2.4)-(2.6) relative
to the variables Vv, o,v,o,p,y, where v and © are the velocity vectors of the centre of mass
and the instantaneous angular velocity of the body, are obtained from Routh's theorem /5/ as
the conditions of positive definiteness of the second variation &'W, on a linear manifold
defined by the equations

Sy = 81y, = Sy == 87ty == Sty == Oy = Oilyg = 0 (4.1)

Let us denote by (62°W,) the value of ©6°W, on the manifold (4.1). When the motion is
perturbed, we retain the former values of the variables which vanished when the motion was
unperturbed. In this case we will have the following relation for the motion (2.4):

QW) = 3 Dh*vy2 + 2malvyy; + Oy — J; — ma?) v4]
=1

The conditions of positive definiteness of this quadratic form are given by the in-
equalities ;

M* > 0, ¥ (y — J; — ma?) — (mal) >0 (j =1, 2)

or, after substituting the values for M* and XAy given by (2.4),
00, — (B +ma?+ ML) L 10 (=1,

Substituting into these inequalities the value of o given by (2.4), we can write them
thus
0 = ma?Q?l (veg — Q)1 >0, Q; (vs, Vs @Y >0 (=1, 2) (4.2)
Q== AjlQ% — vyg (Ajg + ma® — vyyg mal) Q* —
veyagima (vs = 1, y5 = 1)

When analysing conditions (4.2), we shall assume, to be specific, that the inequalities
(3.1) hold for the parameters of the system.
Let us denote by P and P®(i=1,2, 3, 4) the points on the curve I' (Fig.2) at which

the motions (2.5) and (2.6) respectively branch out from the motions (2.4). The values 0y,
Q;2(G=1,2) of the parameters ¢, Q? are given for these points by the equations

Ve =i oy e=dlin=tj=12)

ST Is, 0 VT T (s 1 A,

or, substituting into the second equation the value of ¢ from the first equation, we obtain
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3002,
gvfl:sgslz Q5 (vs ¥, Q) =0 (vy=+1, =41 j=12

Let us consider the motions (2.4) in which the point O lies below the point O (vg=1},
and the point C below the point O (y;= —1) (Fig.la). We will denote by 0< Q<< Q< g/l
Q.2 << 9, the positive roots of the equations @; (1, —1, Q) =0 (j=1,2). Then the analysis
of condition (4.2) will lead to the following conclusions. The motions in question are stable
and the degree of instability x=0 if 0 << 22 <C Q,% and are unstable and %=1 if Q,?2
Q2 and x=3 1if Q<< D’ We have here =2 if Q2 < Q*<C Q% and y =4.
if Q<< QF < 00,

Let us now consider themotions {(2.4) in which point O lies below the pecint 0O, vy = 1),
and point C lies above the point O (y3=1). We will denote by g/l <C Q,®<C;;® the positive
roots of the equations @;(1,1,Q*) =0 (j =1, 2). Then for these motions we will have ¢y =2
if 0 Q2 Qpg®y X =3, 1f Q<<% and x =4 if Q2 < Q< o0,

Next we consider the motions (2.4) in which point O lies above the point O (vg == —1},
and point C below the point O (y;= —1) (Fig.lc). We denote by 0<C Q,%<C ;2 the positive
roots of the equations @; (—1,—1, Q%) =0 {j = 1, 2). Then we shall have for these motions y = 2
if 0<< @2, v =3 if Qi< @<CQ,® and =4 if . 2<<B< 0.

Finally we consider the motion (2.4) in which point O lies above the point O (vy = —1)
and point C lies above the point O (y,=1) (Fig.1ld). Then for these motions jy =4 for all
Q> 0.

The stationary motions for which .y =0 are stable and the motions for which ¥ =1 or
¥ =3 are unstable. The character of the stability of the motions for which y =2 or
¥ = 4, cannot be determined using Routh's theorem.

5. when studying the stability of the motions {2.5) and {2.6), we shall assume without
loss of generality that during the motion of the system the rod remains, at all times, within
the plane y, = 0 and therefore v,=0.

Let us introduce the function

W* (m, &, %, Y1, Viy Var Voo @3, Bas ¥2) = W -+ 2, Q2 (0Vy A+
AV, + %Vsh

Vi=vl+v:—1=0, Vi=v2+vt+vwt—1=0
Vy = a4 B+t —1 =0, @ = kJ

where p,h % are the undetermined Lagrange multipliers. The values of the variables g4 = (u,
Ay %5 Vi Vi, Yar Vs @3, P3s V2)» Obtained from the condition dW*/dg =0  of stationarity of the
function W* are identical with their values in the solutions (2.5) and (2.6), and we have
=M, A=0,, while »x=J, for (2.5) and x =J; for (2.6).

The sufficient conditions of stability of the motions (2.5) and (2.6) are obtained as
the conditions of positive definiteness of the second variation &6*W* on the linear manifold
8V, = 8V, = §V; = 0. The conditions reduce to the requirement that the last four principal
diagonal minors of the Hessian D (W*) = 3°W*/d¢> of the function W* be negative over all its
variables /5/.

The sufficient conditions of stability for {2.5) are given by the inequalities /6/

Q- J) >0, Qou>0 YRS
Ay = miQ2y3yst Imato™ + v + 477m (Iv; — ay,)tvy?l > 0

_ w3BstmiQ0,S (Gg - Am)? [(mal)? — 02| dk
A== Tz (;ga‘)'ﬂ ) (25:* + Bgs) ds >0

D (W*) = Qg (J, — J)A,

and for (2.6) by the analogous inequalities in which J; — J; has been replaced by Jy — Ju
Bs by o3 and J; by J,.

Let us consider the motions (2.5). For the branch I}® (Fig.2) we have ¢ >0, dk/ide >
0. and conditions (5.1) hold except the first one. Therefore, the motions corresponding to
the branch I')® are unstable (y =1). For I[,® we have ¢ <0, o -+ ma® >0, dk/do < 0, nence
A, < 0. Therefore the motions corresponding to ‘the branch I are unstable (y = 3). For '™ we have
o+ mat<<0,2(0+mat)+ Jy—Js>0,dkido >0 and -A; <0, therefore the motions correspond-
ing to the branch I\W. are unstable (y = 3). Finally, for I, we have 2 (o -+ ma®)-+J,—
Jy<<O0, dk/de >0 and A; <0, therefore the motions are unstable (y = 3).

The conditions of stability of the motions {2.6) can be investigated in exactly the same
manner.

Fig.2 shows the results of analysing the conditions of stability of the motions (2.4)-
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(2.6). The numbers accompanying the branches of curve I’ indicate the degree of instability
of the corresponding motions. The distribution of the stable and unstable motions on the
branches of the curve I' is governed by the law of variation in stability for fixed values of
the parameter k, and the change in the degree of instability occurs only at the bifurcation
points.

6. The problem of the relative equilibrium of a body suspended from the fixed point O,
on a rod attached at the point O lying on the principal central axis of inertia, in a Oy ¥,
coordinate system rotating uniformly about the vertical with angular velocity £, is reduced
to studying the potential energy U =1II —1/,JQ® due to gravity and the centrifugal force /4/.

Let us denote by U, the function defined by the expression for W, in which # has been
replaced by U. The conditions of stationarity of W,and U, are the same, and formulas {2.4)-
(2.6), inwhich relations of the form %k = JQ have been omitted, will describe the families
of all relative equilibria,

The set of relative equilibria can be represented geometrically in L, o, A, parameter
space by the point on the curve B determined by equations of the form & = 2 (9), Ay = Ay (0).

When conditions {3.1) hold, the projection of the curve B on to the plane Ay = 0 consists
of several branches. The branches B, {(a) and B;(b), B;(c) and B,(d), Bs(a) and Bs(b) forming
double lines, correspond to the equilibria (2.4). Here the letters a, b, ¢ and d denote the
types of equilibria in which the relative positions of the points O, O, C, are given in Fig.l. The
pairs of branches B,W(a) and B,®(a), B;M(d) and B, (a), B;Y(b) and B,® (b), B,®(b)
and B,® (b) which branch out of the branches By(a), B;(c), By (a) and B, (b) at the points
P, PG PO P respectively, correspond to the equilibria (2.5) and (2.6). Here the letters

a, b, ¢ and d denote the types of relative position of the rod (4,0 and the segment €O of
the ¥yaxis shown in Fig.3.

In order to study the stability of the relative equilibria (2.5) and (2.6), we shall
introduce the function U* obtained from the expression for W* by replacing W and U. The values
of the variables ¢ = (U, A, %, ¥y, Vi, Vs Va: %3, By, 12} obtained from the condition 8U*dg =0 of
stationarity of the function U* are the same as those for the families of equilibria (2.5),
{(2.6), and we have |t = Ay, A == 0,, while % =J; for (2.5} and % =J; for (2.6).

The sufficient conditions for stability of the relative equilibria (2.5}, (2.6) are
reduced to the demand that the last four principal diagonal minors of the Hessian D (U*) =
*U*/9g® of the function U* be negative. 1In the case of (2.5) the conditions are expressed
by the inequalities /6/

Q (J, — Jy) >0, Q20 > 0, mBEQUy 2y, (mate™! + v,2) > 0

A @mgist (254 + Ag) dQ!
8 = LoniPng B b ) BB 0 DU = Qo (T, — T4,

and for (2.6) by the analogous inequalities in which J, — J;y has been replaced by Jy— J,
and Ay; by Ay

Analysing these conditions we arrive at the following conclusions. The relative equilibria
corresponding to the branch B;®, are stable (y = 0). The equilibria corresponding to the
branches B,® and B,Y, B;®, B, are unstable, and we have for them y =1 and ¥ =3
respectively. For the branches B,?®, B,®, B/® we have % = 2.
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